Should You Be Teaching Systems Thinking?

An article I read suggests that systems thinking could become a new liberal art and prepare students for a world where they will need to compete with AI, robots and machine thinking. What is it that humans can do that the machines can't do?

Systems thinking grew out of system dynamics which was a new thing in the 1960s. Invented by an MIT management professor, Jay Wright Forrester,  it took in the parallels between engineering, information systems and social systems.

Relationships in dynamic systems can both amplify or balance other effects. I always found examples of this too technical and complex for my purposes in the humanities, but the basic ideas seemed to make sense.

One example from environmentalists seems like a clearer one. Most of us can see that there are connections between human systems and ecological systems. Certainly, discussions about climate change have used versions of this kind of thinking to make the point that human systems are having a negative effect on ecological systems. And you can look at how those changed ecological systems are then having effect on economic and industrial systems.

Some people view systems thinking as something we can do better, at lest currently, than machines. That means it is a skill that makes a person more marketable. Philip D. Gardner believes that systems thinking is a key attribute of the "T-shaped professional." This person is deep as well as broad, with not only a depth of knowledge in an area of expertise, but also able to work and communicate across disciplines.  

coverJoseph E. Aoun believes that systems thinking will be a "higher-order mental skill" that gives humans an edge over machines. 

But isn't it likely that machines that learn will also be programmed one day to think across systems? Probably, but Aoun says that currently "the big creative leaps that occur when humans engage in it are as yet unreachable by machines." 

When my oldest son was exploring colleges more than a decade ago, systems engineering was a major that I thought looked interesting. It is an interdisciplinary field of engineering and engineering management. It focuses on how to design and manage complex systems over their life cycles.

If systems thinking grows in popularity, it may well be adopted into existing disciplines as a way to connect fields that are usually in silos and don't interact. Would behavioral economics qualify as systems thinking? Is this a way to make STEAM or STEM actually a single thing?

 


David Peter Stroh, Systems Thinking for Social Change

Joseph E. Aoun, Robot-Proof: Higher Education in the Age of Artificial Intelligence

Gaming STEM in Humanities Courses

I did a presentation last month titled "Gaming STEM in Humanities Courses" at the NJEDge Faculty Best Practices Showcase

I talked about using serious games, primarily the Web Adventures series developed by Rice University, as a way to increase students’ science knowledge and to inspire science-related careers. I was interested in “gaming” these STEM programs for teaching humanities courses.

I used the Web Adventures in several courses, but I particularly liked using it in an undergraduate critical thinking course. Take a look at the slides from the presentation.





 


Animating Hair Is a Lesson in STEAM

logo

I am a proponent of the concept of teaching in a STEAM (science, technology, engineering, art, math) framework that goes across disciplines. I have seen many attempts to use science and math in teaching art - some successful, some not.

A new project that does this in an engaging way is a collaboration between Pixar Animation Studios and Khan Academy that is sponsored by Disney. Called "Pixar in a Box," it gives a look behind-the-scenes at how artists at Pixar need to use STEM to make art.

To make balls bounce, leaves in trees move in the wind, fireworks explode or realistic rippling water takes more than drawing skills. It requires computer skills and considerations of math, science such as physics and digital humanities.



In this learning series of videos on simulations, the Pixar artists use hair as an example of an animation problem that needed to be solved. Using examples from their films, such as the character Merida in Brave with her bouncy and curly hair, you learn how millions of hairs can be simulated if you think of them as being a huge system of springs.

As the lessons progress, you can learn about animation roles and will discover what a technical director does in the animation process.

The lessons are appropriate for grades 5 and up - though I can see many adults and younger kids interested in animation from a technical or artistic side enjoying the free series.


Major Money

moneyWith all the talk about alternatives to the degree and open education, we still have 70% of American high school graduates enrolling in college. You would hope that the major they choose are not based solely on money, but salaries are not only important to students but have been important marketing tools for colleges.

The job site Glassdoor did  an analysis of nearly 500,000 resumes and salary reports they hold for their job-seeking users and came up with a ranking of the 50 majors that pay the most during the first five years out of college.

The top ten majors range in salaries from $70,000-58,000.

1. Computer Science

2. Electrical Engineering

3. Mechanical Engineering

4. Chemical Engineering

5. Industrial Engineering

6. Information Technology

7. Civil Engineering

8. Statistics

9. Nursing

10. Management Information Systems

Do you see a theme in the top 10? Yes, STEM majors take most of the top spots. They also point to likely entry-level positions, such as for #6 IT being a programmer analyst, technical support and systems engineer. Social Work comes in at #49 with a  median base salary of  $41,656. Biology slips in at #50 at $41,250 for entry-level jobs like lab assistant or paramedic, Education (K12 teachers) comes in at #41.